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Abstract. In this paper, we formulate the breast cancer diagnosis as a signal detection problem, where the 
signal of interest is the tumor and the noise refers to the healthy tissue in the breast. In communication 
engineering, it is known that the optimal detector of a known signal in noise is the North filter. However, the 
tumor characteristics vary between patients and stages of the disease. We show that, for an unknown signal 
of interest, the optimal filter is given by the Wiener filter correlator. We apply and compare both filters to 
cancerous and healthy ultrasound breast images. We show that the North filter provides 83% accuracy, and 
the estimator correlator achieves 91% accuracy. 
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1. Introduction 
In this paper, we use a communication engineering technology, first developed for radar signal 

identification, to detect tumors in ultrasound breast images. In radar, we are interested in determining the 
presence or absence of an approaching aircraft. This decision making problem is tackled as a hypothesis 
testing problem where the signal detected by the radar is classified as either an aircraft reflection signal or 
noise due to ambient radiation and the receiver electronics. Similarly, we formulate the tumor detection 
problem in breast images as a hypothesis testing problem, where the signal of interest is the tumor. The 
proposed detection system will help the radiologist differentiate between benign and cancerous images. 
Probabilities of detection, error, false alarm, sensitivity, specificity and accuracy are the evaluation criteria of 
the system. 

There are a number of different techniques available to detect breast tumors, which were classified in [1] 
as geometrical based methods, learning-based methods, pyramidal-based or multi-resolution techniques, and 
model-based techniques. Except for the model-based techniques, all other methods assume that the imaging 
breast data is deterministic. In other words, the techniques’ success depends on the quality of the healthy and 
cancerous images. On the other hand, statistical methods weight the noise factor while taking a decision 
about the existence or absence of a tumor in the image. It is therefore surprising that relatively few 
researchers have attempted to investigate the efficiency of statistical-based methods as computer-aided 
diagnostic (CAD) paradigms for breast cancer detection. In [1], the authors proposed a CAD system for 
tumor detection and classification (cancerous vs. benign) in ultrasound breast images based on a two-
dimensional Auto-Regressive-Moving-Average (ARMA) model of the breast image. The estimated 2D 
ARMA parameters are used as the basis for statistical inference and biophysical interpretation of the breast 
image. In [2], the detection of microcalcifications in digital mammograms is formulated as a statistical 
change detection problem in the local properties of the image. A generalized likelihood ratio test is used to 
detect these changes and estimate their location in the image. 

2. Methodology 

2.1   The known template 
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The Matched Filter: In telecommunication engineering, a received waveform is often examined for the 
presence or absence of a signal of interest. In radar, for instance, we are interested in the presence or absence 
of an aircraft. It is the function of the signal processor to decide whether the received waveform consists of 
noise only (no aircraft) or an echo in noise (aircraft present). When an echo is present, the received signal is 
somewhat different from the transmitted waveform, although possibly not by much. This is because the 
received echo is attenuated due to propagation loss and possibly distorted due to the interaction of multiple 
reflections. The optimal detector for the radar problem is the Neyman- Pearson (NP) detector, which 
maximizes the probability of detection for a given probability of false alarm [3]. When the underlying signal 
of interest (to be detected) is assumed to be known, the Neyman-Pearson theorem leads to the matched filter 
solution. 

Similarly, we formulate the breast cancer diagnosis as a signal detection problem, where the signal of 
interest is the tumor and the noise refers to the healthy tissue of the breast. That is we build a CAD system 
based on this communication engineering technology for signal detection. The similarities between the radar 
signal detection problem and the tumor detection in breast images are striking and are summarized in Table I. 

Let us adopt the standard parlance of hypothesis testing theory, where H0 denotes the hypothesis that the 
observed signal is due solely to noise (no tumor), and H1 the alternative hypothesis that the observed signal, 
x[n], is due to both the underlying signal of interest (the malignant lesion), s[n], and noise, w[n]. 

 
H0 : x[n] = w[n], n = 0, 1, · · · ,N − 1 (1)                                                                                                         (1) 
H1 : x[n] = s[n] + w[n], n = 0, 1, · · · ,N − 1. 

 
Table I: The Analogy Between The Radar Signal Detection Problem and Malignant Region Detection in the Breast 

The Radar Problem The Breast Cancer Problem 
The received noisy signal The ultrasound 

The signal of interest A malignant lesion in the breast 
The ambient noise The healthy tissue in the breast 

The matched filter to the transmitted signal The matched filter to the lesion 
 

 
Fig. 1:Depiction of a radar detection problem: (a) the radar system; (b) the transmitted signal; (c) the received signal 

when no airplane is present; (d) The received signal when an airplane is present. 
 

The signal of interest s[n] is assumed known and w[n] is white Gaussian noise (WGN) with variance 
variance 2σ . 

In the decision process, there are two types of concerned error: a Type I error, of deciding in favor of H1 
when H0 is true, also known as a false alarm, and a Type II error, of deciding in favor of H0 when H1 is true, 
also known as the miss. The probabilities of making such errors are denoted by  and , respectively. 
Maximizing the probability of detection in breast cancer (minimizing the Type II error  for a given, 
predetermined value of (false alarm probability) is given by the North filter [4]. The NP detector decides 
H1 if the likelihood ratio exceeds a threshold or 

 

γ>=
H0) p(x;
H1)p(x;)(xL                                                                           (2) 

 
where x= TNxxx ]]1[].......1[]0[[ − is the observed signal. Given the WGN assumption, it can be easily shown 
that the NP detector decides H1 if: 
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Since s[n] is assumed to be known (and thus not a function of the data), we may incorporate the energy 
term into the threshold to yield 
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Calling the right-hand-side of inequality a new threshold 'γ , we decide H1 if : 
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Equation (5) defines the NP detector for a known underlying signal or a known tumor template given by 
s[n]. The detector is shown in Figure 2. 
 

 
Fig. 2: The NP Detector 

The North Filter: The matched filter detector assumes that the noise (healthy breast tissue) is white or 
uncorrelated. This assumption may not be true given the local homogeneity of the breast tissue. The North 
filter is a generalization of the matched filter in the case of a colored noise. It can be shown that if N(f) is 
the Fourier transform of the noise autocovariance function, then the North filter is given by: 
 

                                                                                           (6) 

 

where * denotes complex conjugate, and S(f) is the Fourier transform of the known signal of interest s[n]. 
 
2.2   The random template model 
 

The matched filter approach assumes that we know a priori the signal of interest (the tumor). The 
matched filter approach therefore relies on a pre-defined template of the tumor signal. In this section, we 
relax the assumption of known deterministic tumor signal, and consider instead the tumor to be an unknown 
random signal. This is a valid presumption as the tumor changes its characteristics (shape, size, location, etc) 
from one patient to another and even from one stage of the disease to another for the same patient. Therefore, 
unless we have a catalog of all possible tumors in breast images, it is unrealistic to assume that the tumor is 
perfectly known for all types of breast cancer and all patients. 

We adopt a more realistic approach where we assume that the tumor is a random process with a known 
covariance structure. We examine the optimal detectors that result from the random signal model. To this 
end we assume s[n] is a zero mean, Gaussian random process with covariance matrix Cs. As before, w[n] 
is WGN with variance 2σ . The detection problem is formulated by the same hypothesis testing in Eq. (1), 
where s[n] is assumed to be normally distributed with covariance matrix Cs and is independent of the 
noise w[n]. In particular, we have the following distribution of the data: 
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Fig. 3: The estimator-correlator 

 
Computing the logarithm of the likelihood ratio and retaining only the data-dependent terms yields, the NP 
detector decides H1 if 

 െ ଵଶ ்ݔ ቂሺܥ௦  ሻିଵܫଶߪ െ ଵఙమ ቃܫ ݔ   (8)                                         ߛ

 

Using the matrix inversion lemma 
 

(A+BCD)-1 = A-1 – A-1B(DA-1B + C-1)-1DA-1                                                                                                                  (9) 

 

We have upon letting    ܣ ൌ ,ܫଶߪ ܤ ൌ ܦ ൌ ,ܫ ܥ ൌ    ௦ܥ
 ሺߪଶܫ  ௦ሻିଵܥ  ൌ  ଵఙమ ܫ െ ଵఙర ቀ ଵఙమ ܫ  ௦ିଵቁିଵܥ

                                                                         (10) 
Hence, we decide H1 if 
 ܶሺݔሻ ൌ ः்ݔ  ൌ ∑ ሾ݊ሿःሾ݊ሿேିଵୀݔ  ߛ ′′                                                                               (11) 
 
where ः ൌ ௦ܥ௦ሺܥ   The NP detector correlates the received data with an estimate of the signal .ݔሻିଵܫଶߪ
s[n], i.e., s[n]. It is therefore termed an estimator-correlator (Fig. 3). Note that the test statistic in Eq. (11) 
is a quadratic form in the data and thus will not be Gaussian random variable. Moreover, it can be shown that 
s[n] is the minimum mean square error estimator of s[n], also called the Wiener filter [3].  

3. Simulations 

3.1. The known template model 
In ultrasound images, lesions are almost invariably darker than the background, and thus the gray-scale 

image of the breast is inverted prior to filtering in order to avoid having zero values for tumor areas after 
correlation. 

The matched filter: Figure 4-a shows an ultrasound image, which reflects a malignant type of tumor in 
the breast (in the upper left corner of the image). In particular, observe that the lesion shows an anisotropic 
diffusion behavior within the breast tissue. Any template used for the tumor should, therefore, reflect this 
anisotropic behavior. In Figure 4-b, we plotted the trace (the row) along the center of the lesion. Given the 
diffusive behavior of most lesions in ultrasound images, we propose to use a trapezoidal malignant lesion 
template with diffusive boundaries as shown in Fig. 4-c. The correlation curve of the trace with the template 
is shown in Fig. 4-d. 

We process the ultrasound image in a scanline fashion (i.e., row by row). We correlate each trace (row) 
with the trapezoidal template, which provides an optimal (in the NP sense) automatic system to detect tumors 
in ultrasound breast images. The images that contain a tumor exhibit correlation curve peaks which are 
higher on average than healthy images. The threshold ߛ ′ was chosen experimentally based on a training set 
of ultrasound breast images. Figure 4-e shows the average (along all scanlines) correlation curve of a healthy 
ultrasound breast (in red) and cancerous breasts. Observe that the correlation curve of the healthy breast is 
below the correlation curves of all shown cancerous images. 

The North filter: Unlike the matched filter, the North filter takes into account the correlation structure of 
the noise, which may not necessarily be white. It is actually intuitive that the healthy tissue in the breast 
possesses some type of correlation structure. In the North filter implementation, the tumor template is still 
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assumed to be known a priori, modeled by the diffusive template in Fig. 4-c. We found that the noise 
sequences (scans of the healthy tissues in the breast) can be accurately represented by a second order 
autoregressive (AR) model. Figure 6 shows a noise sequence and its second order AR model, their 
corresponding spectrum, the magnitude of the time-domain North filter, and the average (along the image 
scanlines) North filters of a cancerous and a healthy breast. Observe that the North filter of a cancerous 
breast shows higher amplitudes than a healthy breast. In practice, the average North filter of each ultrasound 
image is computed, and compared to the threshold. If there is no peak that exceeds the threshold, the CAD 
system concludes that the examined image reflects a healthy breast. 

 

 
Fig. 4: The matched filter: (a) an ultrasound image of a malignant lesion in breast; (b) trace (row plot) along the center 

of the lesion; (c) The trapezoidal template of the tumor; (d) The correlation curve of the trace in (b) with the template in 
(c); (e) The average (along all traces of the image) correlation curve of a healthy breast in red, and cancerous breasts in 

other colors. 
 

 
Fig. 5: The North filter: (a) A noise sequence and its second order AR model; (b) The spectrum of a noise sequence and 

its AR model; (c) The magnitude of the North filter g[n]; (d) The North filters of a healthy and cancerous breasts. 

3.2. The random template model: The estimator-correlator 
The covariance matrix of the lesion, Cs, is estimated as the average of the covariance matrices of a 

training set of cancerous ultrasound breast images. Each trace of the image is then correlated with the 
estimated Wiener filter of the lesion, and compared to the experimentally chosen threshold to detect the 
presence or absence of a lesion. The Wiener filter of a cancerous trace and a healthy trace are displayed in 
Figs. 6-b and 6-c, respectively. Table II shows the performance measures (accuracy, specificity, sensitivity) 
of the matched filter, North filter and estimator-correlator. As we argued earlier, the random lesion model 
leads to superior results to the fixed template model because it provides a more realistic model for breast 
tumors, which vary in size, shape, location, etc., according to the type of the disease, the stage of the cancer, 
and the profile of the patient. 

 

 
 

Fig. 6: The estimator-correlator: (a) A cancerous ultrasound image; (b) A trace along the tumor and its Wiener filter in 
red; (c) A trace along a healthy breast and its Wiener filter in red. 
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TABLE II: Performance Analysis of the Matched Filter, North Filter and Estimator-Correlator 
 

 The Matched Filter The North Filter The Estimator-Correlator
Accuracy 83% 83% 91% 
Specifity 67% 83% 83% 
Sensitivity 100% 83% 100% 
 

4. Conclusion 
In this paper, we introduced a statistical approach to the problem of tumor detection in ultrasound images 

based on optimal detection theory used in communication engineering. We investigated two cases: a known 
fixed template of the malignant lesion, and a random model of the lesion. The known template model results 
in the matched filter detector (for white noise) and the North filter detector (for colored noise). The random 
template model results in the estimator-correlator or the Wiener filter correlator. We observed that the 
performance of the detection of the tumor strongly depends on the template used. An effective North filter 
can be implemented as a CAD system for breast cancer diagnosis provided a library of tumor templates is 
available to enhance the performance of the system. Breast cancer lesions vary in their morphological 
characteristics like size, shape, and location. The estimator-correlator detector provides better results than the 
matched filter and the North filter. Although the estimator-correlator provides a more realistic model of the 
tumor, we believe that the North filter will be as robust with a catalog of all possible tumors of the breast. 
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